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INTRODUCTION

One of the most striking features of cognition is the ability to learn about and navigate a com-
plex, information-rich world. From deciding what to eat to learning a new skill, humans and
other animals excel at consolidating and transforming vast amounts of environmental input to
guide behavior. However, this remarkable ability is also fundamentally constrained by limits on
cognitive resources. The concept of bounded rationality—doing the best with what one has—has
long been used as a framework for understanding how cognitive resource constraints shape deci-
sion making. This perspective highlights how resource limitations can lead to deviations from the
idealized, optimal behavior of an unbounded agent ( , ; , ;

, ; , ). Bounded rationality posits that agents employ heuristics and
simplified decision rules to manage the computational complexities of real-world problems.

The related concept of resource rationality refines bounded rationality by formalizing it in com-
putational terms, linking cognitive limitations to the physical constraints of the systems executing
the decisions ( , ; , ). All machines, including the brain, face
physical constraints that limit their capacity to store and transmit information. These constraints
necessitate trade-offs between maximizing reward and minimizing computational cost, which has
important implications for the system’s behavior. For example, agents may sacrifice some poten-
tial rewards to simplify decision making and reduce cognitive load. The resource rational perspec-
tive proposes that apparent deviations from rationality are not failures of the system, but rather
reflect the optimal use of limited resources.

Despite these valuable insights, existing theories often lack precise, quantitative models that
explain how agents learn to balance cognitive costs and rewards in real-time, especially in the
domain of action selection. Furthermore, while the time costs of decision making (i.e., the number
of mental operations required to implement decisions) have been extensively studied ( ,

; , ; , ; , ), their representational costs
(i.e., the amount of memory storage required) remain relatively underexplored. We are left with
lingering questions: How do agents simplify decision making through interactions with their



environment? How does the trade-off between reward and cognitive cost shape both behavior
and the neural mechanisms that support it?

This dissertation addresses these questions by developing a theoretical framework that ex-
plains how biological agents optimize behavior within the constraints of limited cognitive re-
sources. Specifically, I formalize the concept of policy compression—the simplification of action
policies to reduce their representational costs—and develop an online algorithm that learns to dy-
namically balance rewards and costs through interactions with the environment. Through com-
putational modeling, behavioral experiments, and lesion studies, this dissertation investigates
the mechanisms and implications of policy compression, explaining how agents achieve com-
plex behavior within the limits of their cognitive resources.

The dissertation is organized as follows: Chapter 1 introduces the theoretical framework of
policy compression, formalizing the trade-off between cognitive cost and reward. Chapter 2
grounds this theory in empirical evidence, reinterpreting a variety of behavioral and neural phe-
nomena through the lens of cognitive resource constraints. Chapters 3 and 4 present new ex-
perimental evidence showing how humans actively exploit environmental structure to simplify
decision making and reduce cognitive load. Chapter 5 proposes that the brain uses policy com-
pression as a cost-efficient strategy to balance robustness and flexibility in adaptive behavior. Fi-
nally, Chapter 6 concludes by exploring future directions and the broader implications of policy

compression.

CHAPTER 1: THEORETICAL FOUNDATIONS OF POLICY COMPRESSION

The work in Chapters 1 and 2 was published in Psychology of Learning and Motivation
( , 2020).

Action selection demands memory. When you play an instrument, drive to work, or prepare
a meal, your brain is retrieving stored information about policies, the mappings from states of the
world to actions ( , ). In the language of information theory, policies can be
described as communication channels that transmit information about states of the world to guide
action selection (Figure 1A). The complexity of a policy reflects the amount of memory required to
store it, which can be formally quantified in bits of information. Since the brain’s memory capacity
is finite, policies must be “compressed” as much as possible, discarding redundant information
and reducing precision where it’s not needed. Intuitively, if a policy can be compressed, it will be
easier to remember.

To provide an intuitive example, imagine you are preparing a meal for your family. In this case,
states correspond to family members, actions correspond to dishes, and policies are probabilistic
mappings from family members to dishes (Figure 1B). If everyone in your family is happy to eat
the same dish, you can ignore the state entirely and just take the same action (prepare the same
dish) repeatedly. Such a policy is “compressed” (low complexity) in the sense that it consumes
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Figure 1: Policy compression. (A) Policies can be described as communication channels that map
states to actions. The channel’s storage capacity is the policy complexity. (B) Cooking dinner for
your family represented as a low complexity policy (cooking everyone the same dish) and high
complexity policy (cooking everyone different dishes). (C) The optimal policy combines informa-
tion about the most rewarding action(s) in each state )(s, a) with the action(s) that is chosen most
frequently overall P(a). The trade-off parameter, 3, determines the relative contribution of Q(s, a)
and P(a). Example distributions depict action selection in one state. (D) A limit on the agent’s
capacity, C, results in a trade-off between reward and complexity. Low complexity policies (low
B) are biased towards P(a). High complexity policies (high ), are biased towards Q(s,a). (E)
An agent’s capacity limit affects various aspects of behavior, including policy complexity, earned
reward, stochasticity of actions, and response times (RT).



fewer bits of memory compared to one in which you need to remember separate dishes for each
family member (high complexity).

Unfortunately, our brains are not perfect at remembering all of the state information needed
to guide action. A distracted or tired chef might misremember who wants to eat what dish, and
may even confuse preferred dishes between family members. These capacity constraints create
a trade-off between maximizing reward (e.g., satisfying family members’ preferences) and mini-
mizing the cost of representing action policies in memory (Figure 1D). By framing action selection
as a capacity-limited communication channel, we can formalize this trade-off and derive an op-
timal policy; i.e., a behavioral strategy that maximizes rewards subject to constraints on memory
resources (Figure 1C):

7 (als) o explBQ(s, a) + log P*(a)]. 1)

This equation illustrates how capacity-limited agents balance selecting the most rewarding action
in a given state, (s, a), with relying on their history of frequently chosen actions, P(a). The
resulting behavior integrates information from both the current state and past actions. The trade-
off parameter, 3, indirectly represents the agent’s capacity limit, which constrains the maximum
policy complexity the agent can achieve. This term also determines the relative influence of Q(s, a)
and P(a), which shapes a range of behavioral outcomes. Agents with higher capacity can earn
more reward, behave less randomly, and take longer to execute decisions, implications we will
explore in more detail in the next chapter (Figure 1E).

In the remainder of the chapter, I develop a tractable reinforcement learning algorithm that
learns optimal policies through repeated interactions with the environment. This novel algorithm
incrementally adjusts the policy using reward feedback while incorporating a penalty for com-
plexity. In summary, policy compression marries reinforcement learning with information the-
ory by modeling policies as capacity-limited channels that balance the demands of memory
and reward. In subsequent chapters, I demonstrate how this model explains a wide range of
behavioral and neural phenomena, reframing them as manifestations of policy compression.

CHAPTER 2: THE PECULIARITIES OF POLICY COMPRESSION

Why do we sometimes choose randomly, even when we know the best option? Why do old habits
persist, even when circumstances change? Why does it take longer to make decisions in some
situations than others? These seemingly unrelated questions about human behavior can all be
understood through the lens of policy compression. In this chapter, I use illustrative simulations
and experimental reanalysis to unify a variety of behavioral and neural phenomena—including
stochasticity, perseveration, response times, chunking, and navigation—under the framework
of policy compression. While each individual phenomenon may be explained by alternative the-
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ories, I make the case that they can be understood collectively as reflections of a single underlying
principle. Here, I highlight three of these phenomena and discuss intriguing applications of this
framework to illustrate its broad relevance.

Stochasticity. Imagine reading a restaurant menu, unsure which dish to order. Even though
the waiter recommends a popular dish, you might still choose another at random. This random-
ness, or stochasticity, in decision making has often been attributed to exploratory behavior or
unexplained noise in how we evaluate options ( , ). Policy compres-
sion offers an alternative explanation: randomness is not a flaw but a feature of capacity-limited
decision making. When cognitive resources are scarce, introducing randomness allows us to re-
duce the complexity of our decision policies while still approximating good outcomes. Empirical
data confirm the theory’s prediction that increasing cognitive load leads to more random choices
( , )- Randomness is thus a rational adaptation to cognitive resource constraints.

Perseveration. Our tendency to stick with old habits can similarly be reframed as a rational
strategy under limited cognitive capacity. It is more efficient to rely on past choices rather than
calculating the best course of action for every situation—so why not order the same dish you al-
ways do? In classical tasks like reversal learning, where reward contingencies abruptly change,
the inability to quickly adapt behavior reflects people’s reliance on a simpler, low complexity pol-
icy. Simulations reveal that agents with reduced capacity exhibit stronger perseverative tenden-
cies, consistent with empirical data ( , ; , ; , ).
These findings help explain perseveration not as a failure of flexibility but as an optimal solution
given limited cognitive resources.

Response times. The more menu options to chose from, the longer it takes to pick one! Hick’s
Law, a classic finding in cognitive psychology, states that response times increase logarithmically
with the number of possible options ( , ; , ). But why should this be the case?
Policy compression provides an elegant computational explanation: the more complex a policy,
the longer it takes to implement ( , ). Selecting an action involves pro-
cessing information proportional to the complexity of the policy, analogous to how running a
longer piece of code requires more time. Policy compression predicts that people with higher
cognitive capacity will learn more complex policies and exhibit slower response times, a finding
supported by reanalysis of human behavior in a simple choice task ( , )-

Applications in psychiatry, neuroscience, and machine learning. The implications of policy
compression extend beyond everyday behaviors. In psychiatry, compression offers a new lens for
understanding cognitive deficits in a range of disorders. For example, patients with schizophrenia
show reduced policy complexity and increased perseveration, consistent with the behavior of
capacity-limited agents ( , )- By linking symptoms to underlying resource
constraints, policy compression provides a foundation for targeted interventions and diagnostics.

Policy compression also generates testable hypotheses in neuroscience. For instance, the rein-
forcement learning algorithm described in Chapter 1 penalizes agents for high complexity policies,



and this penalty influences the reward prediction error (RPE), a signal thought to be mediated by
phasic dopamine ( , ). This leads to an interesting and testable prediction: phasic
dopamine levels should vary systematically with policy complexity.

Beyond cognitive science, the principles of policy compression have implications for designing
machine learning algorithms. By promoting generalization and avoiding overfitting, compression
conserves memory resources while enabling machines to learn more efficiently. Compression also
facilitates multitask learning by allowing shared representations across tasks, though this comes
at the cost of increased vulnerability to interference—a fundamental trade-off in resource-limited
systems. A deeper understanding of policy compression can provide valuable insights for both
biological and artificial systems that face physical constraints.

CHAPTER 3: HUMAN DECISION MAKING BALANCES REWARD MAXIMIZATION AND POLICY
COMPRESSION

The work in this chapter was published in PLOS Computational Biology (
, 2024).

While policy compression has been successfully applied to explain diverse behavioral phe-

nomena, including perseveration and undermatching ( , ; , ;

, ; , ), these findings have largely relied on post hoc

analyses of previously published datasets. In this chapter, I design novel experiments that di-

rectly test the unique predictions of policy compression, allowing us to explore new hypotheses
about learning under cognitive constraints.

Policy compression predicts that the structure of relationships between states, actions, and
rewards influences how agents simplify their policies. To test this, I designed three tasks that ma-
nipulated the distribution of states and actions to encourage policy compression. Here, I highlight
one task as a representative example: participants learned to make specific key presses (actions)
in response to visual stimuli (states) to earn rewards (Figure 2A). In the "Test" condition, one ac-
tion (e.g.,”]”) consistently delivered rewards across all states, enabling participants to compress
their policies by ignoring state-specific information. In other words, participants could repeat-
edly choose the same rewarding action (e.g.,”]”) rather than tailoring their responses to each state,
reducing the task’s demand on memory.

Policy compression predicted three key behavioral outcomes (Figure 2B-C): (1) participants
adopted simpler, lower-complexity policies in the “Test” condition compared to a “Control” con-
dition where such structure was absent; (2) compression enabled participants to earn more reward
in the “Test” condition; and (3) participants exhibited a choice bias, favoring the shared action over
other equally optimal actions. Crucially, this bias is not predicted by traditional reinforcement
learning models, which would assume equal selection among all optimal actions. These findings
suggest that people adapt their degree of policy compression based on environmental structure.
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Figure 2: Human decision making behavior aligns with key predictions of policy compression.
(A) A simple instrumental learning task designed to encourage compression, where some states
share an optimal action. (B) Policy compression predicts distinct behavioral signatures and choice
biases. (C) Human behavior closely matches model predictions.(D) Low policy complexity is
associated with stronger choice bias. (E) Individuals with lower policy complexity leverage their
choice biases to earn more reward.



Across all tasks, participants consistently favored simpler policies, leveraging redundancies
in state-action mappings to reduce memory demands. As a result, choices were systematically
biased towards actions that were chosen most frequently across states. Choice bias increased un-
der higher memory load and among participants with lower policy complexity (Figure 2D), who
benefitted more from their bias by earning more rewards for less effort (Figure 2E). Finally, par-
ticipants further compressed their policies and displayed greater choice bias under time pressure,
confirming the prediction (from Chapter 2) that actions are selected through the time-sensitive de-
coding of compressed representations ( , ). Importantly, these results cannot
be explained by models that lack capacity constraints on policy complexity, including those that
incorporate working memory contributions to reinforcement learning ( , )-
Taken together, these findings demonstrate that people exploit environmental structure to simplify
their policies and provide strong experimental support for the policy compression framework.

Understanding human behavior under cognitive constraints has practical implications for de-
signing decision environments that promote better choices, especially in high-stakes contexts. For
example, choice architecture strategies, such as default options, leverage perseverative biases to
influence decision making. Automatic enrollment in retirement plans ( , ) and
default renewable energy options ( , ) show how defaults can posi-
tively impact decisions for individuals who lack the time or cognitive capacity to fully evaluate al-
ternatives. By incorporating quantitative models like policy compression, decision environments
can be strategically engineered to align with behavioral tendencies, shaping choice behavior more
effectively ( , ).

CHAPTER 4: ACTION CHUNKING AS CONDITIONAL POLICY COMPRESSION
The work in this chapter is currently under review at Cognition ( , ).

The policy compression framework introduced in Chapter 1 does not yet address how agents
might simplify behavior by taking advantage of temporal structure in their environment—an im-
portant limitation, given that natural environments often exhibit temporal continuity of states and
actions. In this chapter, I revisit the concept of action chunking and reframe it as a natural conse-
quence of policy compression (an idea I briefly introduce in Chapter 2). In doing so, I derive novel
predictions and test them through new experiments, highlighting how agents exploit temporal
regularities to conserve cognitive resources.

Many skills in our everyday lives are learned by sequencing actions toward a desired goal.
These action sequences can become “chunks,” where individual actions are grouped together and
executed as a single unit, improving their efficiency ( , ). Action chunking is a hallmark
of skill learning and habitual behavior that has been extensively studied ( , ; ,

, 1999 , 2003; » 2006; , 2009; , 2023).

However, a puzzle remains as to why and under what conditions chunking occurs. Existing mod-
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Figure 3: Action chunking as policy compression. (A) Temporal structure enables the current ac-
tion (stopping the car) to be informed by the previous state (the yellow light) and action (slowing
down). Because the current state (red light) provides redundant information, the agent can ignore
it, reducing memory demands. In other words, the agent does not need to explicitly remember
that red means “stop.” (B) Conditional policy compression reduces the representational cost of
policies by leveraging additional sources of information, such as temporal dependencies between
states. (C) Participants learned to associate key presses (actions) with visual stimuli (states). Some
experiment blocks contained structured temporal dependencies, or state “chunks” (grey boxes), to
encourage action chunking. (D) Temporal structure leads to faster learning, higher accuracy, and
shorter response times (RT). Human behavior aligns with model predictions. (E) Action chunking
reduces conditional policy complexity, enabling participants to earn more reward with less cogni-
tive effort. (F) Chunking increases under a higher memory load (Ns = 6), evidenced by a greater
decrease in action chunk RT. (G) Chunking reduces error in not-chunked (unpredicted) states un-
der high memory load (Ns = 6).



els suggest that chunking reduces the time cost of actions by reducing their latency (
, ). However, I propose an alternative explanation based on policy compression:
action chunking reduces the memory required to store and execute action sequences (
, 2021).

To illustrate this, imagine you are driving through an intersection. You know that a yellow
traffic light is always followed by a red light, so upon seeing yellow, you can initiate an action
sequence of slowing down and stopping the car—all without needing to remember the specific
action for the red light (Figure 3A). By reducing demands on memory, you also act faster, which
explains the time benefits of chunking. Notably, viewing chunking as saving memory resources
makes unique predictions: action chunking should (1) increase with memory load, where the
pressure to compress representations is greater, and (2) free cognitive resources for processing
other information.

To formalize these ideas, I extended the model in Chapter 1 to develop conditional policy
compression, which posits that agents reduce cognitive costs by using additional sources of
information—such as temporal structure—to simplify policies (Figure 3B). By using information
from prior states to guide action selection, agents can ignore the current state, thereby reducing the
memory required for action selection. As a result, actions are selected faster and more accurately,
as agents can efficiently anticipate and execute future actions based on previous states, reinforcing
the link between policy complexity and response time.

To test this theory, I designed a serial reaction time task where participants learned to asso-
ciate key presses (actions) with visual stimuli (states). Critically, I manipulated the predictability
of state sequences, creating conditions that encouraged action chunking (Figure 3C). Results from
the experiments confirmed four key model predictions: (1) Temporal structure led to faster learn-
ing, higher accuracy, and shorter response times, replicating previous findings in action chunking
(Figure 3D). (2) Chunking reduced conditional policy complexity—the memory required for action
selection—enabling participants to earn more rewards with less cognitive effort (Figure 3E). (3)
Chunking increased under higher memory load: participants showed greater reductions in re-
sponse time when the number of states was larger, consistent with the greater pressure to com-
press policies (Figure 3F). (4) Finally, chunking freed working memory resources, improving ac-
curacy even on non-chunked (unpredicted) stimuli (Figure 3G).

In summary, action chunking emerges as a behavioral strategy for managing limited memory
resources by leveraging temporal structure in the environment. By applying a novel theoretical
framework to a classic phenomenon, this work highlights the adaptive value of chunking for
resource-limited agents.
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CHAPTER 5: POLICY REGULARIZATION ENABLES ROBUSTNESS AND FLEXIBILITY IN MOTOR SE-
QUENCE LEARNING

Having demonstrated that human behavior aligns with the principles of policy compression, I
now turn to the neural mechanisms that enable cost-efficient, adaptive behavior. Compression
enhances generalization and robustness by allowing rewarding actions to be reused across states
or contexts. However, this strategy has limitations in dynamic environments, where flexibility is
essential for adapting to changing demands. This raises a fundamental question: how do capacity-
limited neural systems balance robustness with the flexibility to adapt to new environmental
contexts?

To explore this question, we must first reimagine policy compression as a form of regulariza-
tion that encourages the adoption of simpler policies. The optimal “control” policy introduced in
Chapter 1 (Eq. 1) is regularized by a “default” policy, meaning it is biased toward reusing behav-
iors that are rewarded across contexts to minimize representational cost ( , ;

, ; , ) (Figure 4A). When necessary, the control policy can over-
ride the default to adapt to new environmental demands, though it incurs a cost proportional to
its deviation from default behavior. For example, a pianist learning a new piece might rely on fa-
miliar finger patterns mastered through practice (their default policy), but also remains flexible to
learn new sequences. This balance between robustness and flexibility ensures adaptive behavior
while conserving cognitive resources.

Given their well-studied role in learning and action selection, I hypothesized that cortico-
striatal circuits in the brain implement policy regularization to achieve this balance (Figure 4B)
( , ; , ; , ). Within the striatum, the dorsolateral striatum
(DLS) and dorsomedial striatum (DMS) serve distinct roles and compete for behavioral control
( , ): the DLS supports robust, habitual responding, while the DMS enables flexi-
ble, goal-directed behaviors ( , ; , ; ,

). I argue that this division of labor reflects a strategy to maximize reward while reducing
cognitive costs: the DLS stores the default policy, while the DMS remains flexible to learn from
environmental feedback. Additionally, cortical regions such as motor cortex (MC) and prefrontal
cortex (PFC) provide the state and action representations upon which these policies are learned
( , 2006; » 2003; , 2003;

,2023; , 2024).

To test these ideas, my collaborators and I employed a motor sequence learning task paired
with lesion experiments to examine how these brain regions contribute to adaptive behavior (Fig-
ure 4C). Rats were trained on two tasks: one required them to respond to visual cues with lever
presses (CUE), while the other involved reproducing a consistent sequence of lever presses from
memory (AUTO) ( , ; , ; , ). The CUE task assessed ani-
mals’ ability to flexibly respond to a dynamic environment, while the AUTO task evaluated their
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execution of automatized, default behaviors—much like how a pianist can switch between read-
ing new sheet music and playing a riff from memory.

Through model-simulated “lesions” to different brain regions, I reproduced key experimen-
tal findings ( , ; , ; , ; ,

): (1) DLS lesions impaired automatic behaviors but preserved flexibility in cue-based tasks
(Figure 4D); (2) DMS lesions impaired the learning of novel associations but spared learned be-
haviors (Figure 4E); and (3) MC lesions disrupted flexible responding to cues without affecting
automatic behaviors (Figure 4F). These results align with the hypothesized computational roles of
these regions within the framework of policy regularization.

Our model generated several novel predictions for future experiments: First, DMS lesions
should impair learning of new state-action contingencies while preserving existing skills. Second,
due to the competitive interaction between the two regions, DLS lesions should enhance learning
of cued behaviors, while DMS lesions should accelerate habitual, automatic responding. Third,
MC and PFC lesions should specifically disrupt skill acquisition through their inputs to DLS and
DMS, respectively. Finally, increasing cognitive load should strengthen reliance on default behav-
iors, highlighting the adaptive value of automatization for managing limited cognitive resources.

I have detailed a normative theory of the functional organization of cortico-striatal circuits,
proposing that the brain uses policy compression as a cost-efficient strategy to balance robustness
and flexibility. While previous models focused on the neural dynamics of adaptive control (

p p ), our approach takes a different perspective by asking why the brain might be
organized this way in the first place. By combining policy compression with existing mechanis-
tic models, we can develop a more complete understanding of how the brain enables efficient,
adaptive behavior within biological constraints.

CHAPTER 6: CONCLUSION

In this dissertation, I have explored the mechanisms underlying policy compression and its impli-
cations for cognitive resource allocation in learning and decision making. By combining compu-
tational modeling, behavioral experiments and lesion studies, I have demonstrated how a single
theoretical framework can explain diverse aspects of action selection—from decision making to
motor skill learning.

Looking ahead, the theory of policy compression opens numerous avenues future research.
Some key questions include: (1) How do different types of cognitive cost—such as the cost of
time, memory, and data—interact to shape behavior? (2) Can these cost measures help quantify
and differentiate dimensions of psychiatric disorders, leading to more precise diagnostic tools and
targeted interventions? (3) What roles do dopamine and other neural mechanisms play in imple-
menting policy compression? (4) How does policy compression scale in high-dimensional and

ecologically valid decision-making environments, where cognitive demands are more complex
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and dynamic? By answering these questions, we can deepen our understanding of how resource
constraints shape behavior and provide new tools for addressing challenges in neuroscience, psy-
chiatry, and AL

Beyond its theoretical contributions, policy compression offers practical applications. Under-
standing how humans compress and optimize behavior could inspire the design of more user-
friendly technologies that better account for human cognitive limitations. It could also guide the
development of more efficient machine learning algorithms by incorporating principles of human-
like resource management. Finally, this framework offers new approaches for quantifying indi-
vidual differences in cognitive processing, with potential applications in both clinical assessment
and personalized interventions. The future of policy compression is expansive.
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